Qu&Co comments on this publication:

In this arXiv submission by Qu & Co and Covestro, a well-known approximation in classical computational methods for quantum chemistry is applied to a quantum computing scheme for simulating molecular chemistry efficiently on near-term quantum devices. The restricted mapping allows for a polynomial reduction in both the quantum circuit depth and the total number of measurements required, as compared to the conventional variational approaches based on near-term quantum simulation of molecular chemistry, such as UCCSD. This enables faster runtime convergence of the variational algorithm to a potentially higher accuracy by using a larger basis set allowed by the restricted mapping. The latter is shown via an example simulation of the disassociation curve of lithium hydride. These results open up a new direction for efficient near-term quantum chemistry simulation, as well as decreasing the effective quantum resource requirements for future fault-tolerant quantum computing schemes.